Электри́ческое сопротивле́ние — скалярная физическая величина, характеризующая свойства проводника и равная отношению напряжения на концах проводника к силе электрического тока, протекающему по нему. Размерность электрического сопротивления dir R = L2MT−3I−2. Сопротивление, для цепей переменного тока и для переменных электромагнитных полей описывается понятиями Импеданс и Волновое сопротивление. Сопротивлением (резистором), также называют радиодеталь, оказывающую электрическое сопротивление току.
В международной системе единиц, единицей сопротивления является Ом (Ω, Ом). В системе СГС единица сопротивления не имеет специального названия. Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной, для данного проводника; её можно рассчитать, как
R = \frac{U}{I},
где
R — сопротивление;
U — разность электрических потенциалов на концах проводника, измеряется в вольтах;
I — ток, протекающий между концами проводника под действием разности потенциалов, измеряется в амперах.
Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе служит сименс (1 См = 1 Ом−1).
_____________________________________________________________________________________________________________________
Закон Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома.
Закон Ома гласит:
« Сила тока, в однородном участке цепи, прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка. »
И записывается формулой:
« I = {U \over R} »
Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).
Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Законы Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.