СХЕМА
Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.
За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет конца процессу усовершенствования.
ПЕРЕДАТЧИК
Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас.
Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север.
Теперь все готово к построению передатчика.
Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении.
Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку.
Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.
Опыт Фарадея
Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр).
Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.
Подведем итоги:
• Напряжение батарейки создает поток электронов в первом проводе;
• Движущиеся электроны создают магнитное поле вокруг провода;
• Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
• Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.
Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.
Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!
В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости.
Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат.
Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем.
Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.
Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.
Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.
Давайте рассмотрим этот процесс подробней.
Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.
Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.
Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).
Принцип модуляции.
Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.
Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.
Упрощенная структурная схема радиопередатчика.
Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.
Теперь мы можем послать наш голос в окружающее пространство. Что же дальше? Кто оценит наше ораторское искусство? Настала пора позаботиться о слушателях.
ПРИЕМНИК
Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.
В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.
В качестве регистратора сигналов в то время использовалось специальное устройство – когерер. Когерер представлял собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.
Когерер. Для наглядности металлические пластины показаны раздвинутыми
При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (например, звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос, для этого требовались более совершенные приборы.
Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.
НАСТРОЙКА НА ВОЛНУ
Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту.
Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – это свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).
Колебательный контур.
Если присоединить батарею к пластинкам (более технично – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться, что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.
Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.
Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.
ИТОГИ:
Внешнее воздействие
• Внешнее напряжение заряжает конденсатор;
• После заряда конденсатора до максимума, напряжение отключается.
Автономная работа
• Конденсатор разряжается через катушку;
• В катушке – электрическое поле;
• Электрическое поле создает вокруг катушки магнитное поле;
• После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
• Магнитное поле начинает «возвращаться» в катушку;
• Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
• На обкладках конденсатора появляется напряжение;
• Напряжение заряжает конденсатор;
• Заряд достигает максимума, магнитное поле минимума;
• Конденсатор начинает разряжаться через катушку;
• Через катушку течет ток, создавая электрическое поле… и т.д.
Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот.
Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.
Напрашивается идея «создания вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники, из которых сделан контур, обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.
Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.
ПОРА ОГЛЯНУТЬСЯ
Теперь мы можем более конкретно объяснить, как же работает передатчик.
Электромагнитное поле возникает при электрических колебаниях и в контуре, т. е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре, вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает и электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.
К ЧЕМУ ВСЕ ЭТО?
Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).
При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания.
Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других.
Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно.
Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).
Колебательного контур «пропускает» только резонансную частоту.
Чтобы настроить контур в резонанс, необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элемент, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ). Обычно с его помощью и осуществляется настройка на нужную частоту (т.е. настройка контура на частоту резонанса).
Схематичное устройство КПЕ (слева) и его внешний вид (справа).
Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент, у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.
Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.
ЗАБЕГАЯ НАЗАД
Давайте сделаем небольшое отступление – настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами.
Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию.
Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.
Мы не будем усложнять и без того не простой рассказ. Антеннам посвящена масса всевозможных публикаций в различных источниках. Кого это интересует, могут посетить близлежащую книжную лавку, библиотеку или «порыться» в Интернете.
ВЫВОДЫ:
Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (как, впрочем, и в передатчике с передающей) частотой.
Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.
В самом простом варианте антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.
А ТЕПЕРЬ ПЕРЕХОДИМ НА ПРИЕМ
В общем случае процесс приема сигнала выглядит следующим образом:
• Электромагнитные волны наводят в антенне токи высокой частоты;
• Эти токи поступают на входной контур;
• Контур выделяет из множества частот только узкую полосу, на которую он настроен;
• Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию);
• Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать.
ДЕТЕКТОРНЫЙ ПРИЕМНИК
Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.
Задача амплитудного детектора – преобразование переменного тока в постоянный (выпрямление).
Выпрямление электрического тока диодом. Выпрямление электрического тока (шутка)
Проще всего процесс обработки высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.
Схема детекторного приемника и форма сигналов в различных точках. 1 – ВЧ сигнал, выделенный колебательным
контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники
Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке (1) представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну (2), которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (на рисунке показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать на наушники – нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор. Емкость конденсатора выбрана таким образом, чтобы он пропускал только высокочастотную составляющую сигнала – на радиотехническом сленге обычно говорят «замыкал на землю». Теперь мы имеем сигнал (3) эквивалентный переданному радиопередатчиком.
Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес, но на его примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.
К недостаткам детекторных приемников следует отнести: низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала.
Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволны. А как было отмечено выше, уровень этой энергии очень мал и для громкоговорящего приема должен усиливаться. Сигнал детекторного приемника настолько слаб, что позволяет прослушивать сигналы только мощных близлежащих радиостанций и только на наушники. Для повышения уровня принимаемого сигнала используются различные виды усиления, а это уже довольно сложные схемы, содержащие десятки, а то и сотни элементов.
Еще немаловажным является то, что детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в радиовещании. Системы подвижной связи обычно применяют либо частотную модуляцию, либо подвид амплитудной – так называемую однополосную модуляцию.
Несмотря на указанные недостатки, детекторный приемник радовал слушателей в течение примерно двух десятилетий с начала XX века. Его усовершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, для кого-то профессией. Да и сейчас для некоторых путь в электронику начинается с изготовления детекторного приемника. При всей его архаичности не стоит забывать, что для многих наших пра- или прапрадедушек и бабушек он был единственным окном в информационный мир радио.
СУПЕРГЕТЕРОДИН
Революция произошла в 1913 году (не путать с 1917), когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе.
Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих.
Классическая блок-схема супергетеродинного приемника.
Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.
В чем же прелести супергетеродина и почему он завоевал такую популярность?
Как видно из схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное.
Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.
В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции.
Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы (радиочастоты соседних радиопередатчиков, эфирные помехи и т.п.). Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.
Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах практически не встречаются механические конденсаторы переменной емкости.
«СУПЕР» СУПЕРГЕТЕРОДИН ИЛИ СУПЕРГЕТЕРОДИН С ДВОЙНЫМ ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ
В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 кГц).
Блок-схема супергетеродинного приемника с двойным преобразованием частоты.
Большинство приемников современных радиостанций и другого радиосвязного оборудования собираются по схеме супергетеродина с двойным преобразованием. В некоторых случаях, в частности в высококлассных любительских приемниках и в специальной технике, применяются супергетеродинные схемы с тройным преобразованием. Для вас принцип их работы уже должен быть очевиден из названия.
РАДИОВОЛНЫ И ЧАСТОТЫ
ЧТО ТАКОЕ РАДИОВОЛНЫ
Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).
Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны (в метрах) рассчитывается по формуле:
или примерно
где ƒ - частота электромагнитного излучения в МГц.
Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок. 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами.
В дальнейшем мы убедимся, что знание длины волны очень важно при выборе антенны для радиосистемы, так как от нее напрямую зависит длина антенны.
Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. Кстати, на этом основано применение электромагнитных волн в радиолокации.
Еще одним полезным свойством электромагнитных волн (впрочем, как и всяких других волн) является их способность огибать тела на своем пути. Но это возможно лишь в том случае, когда размеры тела меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить – вспомните американский самолет-невидимку «Stealth».
Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.
Например, поток энергии электромагнитного излучения Солнца на поверхность Земли достигает 1 килоВатта на квадратный метр, а поток энергии средневолновой вещательной радиостанции – всего тысячные и даже миллионные доли Ватта на квадратный метр.
РАСПРЕДЕЛЕНИЕ СПЕКТРА
Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой.
Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются.
Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:
Диапазон
частот Наименование диапазона
(сокращенное наименование) Наименование
диапазона волн Длина волны
3–30 кГц Очень низкие частоты (ОНЧ) Мириаметровые 100–10 км
30–300 кГц Низкие частоты (НЧ) Километровые 10–1 км
300–3000 кГц Средние частоты (СЧ) Гектометровые 1–0.1 км
3–30 МГц Высокие частоты (ВЧ) Декаметровые 100–10 м
30–300 МГц Очень высокие частоты (ОВЧ) Метровые 10–1 м
300–3000 МГц Ультра высокие частоты (УВЧ) Дециметровые 1–0.1 м
3–30 ГГц Сверхвысокие частоты (СВЧ) Сантиметровые 10–1 см
30–300 ГГц Крайне высокие частоты (КВЧ) Миллиметровые 10–1 мм
300–3000 ГГц Гипервысокие частоты (ГВЧ) Децимиллиметровые 1–0.1 мм
Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.
Пример распределения спектра между различными службами [1]
Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:
Термин Диапазон частот Пояснения
Коротковолновый диапазон (КВ) 2–30 МГц Из-за особенностей распространения в основном применяется для дальней связи.
«Си-Би» 25.6–30.1 МГц Гражданский диапазон, в котором могут пользоваться связью частные лица. В разных странах на этом участке выделено от 40 до 80 фиксированных частот (каналов).
«Low Band» 33–50 МГц Диапазон подвижной наземной связи. Непонятно почему, но в русском языке не нашлось термина, определяющего данный диапазон.
УКВ 136–174 МГц Наиболее распространенный диапазон подвижной наземной связи.
ДЦВ 400–512 МГц Диапазон подвижной наземной связи. Иногда не выделяют этот участок в отдельный диапазон, а говорят УКВ, подразумевая полосу частот от 136 до 512 МГц.
«800 МГц» 806–825 и 851–870 МГц Традиционный «американский» диапазон; широко используется подвижной связью в США. У нас не получил особого распространения.
Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.
В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.
КАК РАСПРОСТРАНЯЮТСЯ РАДИОВОЛНЫ
Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота).
Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.
Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.
Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой.
Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.
Распространение длинных и коротких волн [2].
Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.
Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.
Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.
Отражательные слои ионосферы и распространение коротких волн
в зависимости от частоты и времени суток [1].
Распространение коротких и ультракоротких волн [2].
Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.
Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны).
Возможность направленного излучения волн позволяет повысить эффективность системы связи. Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящихся не в створе луча.
При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.
Параболические направленные антенны [1].
Необходимо отметить, что с уменьшением длины волны возрастает их затухание и поглощение в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, сильно ограничивающей дальность связи.
Мы выяснили, что волны радиодиапазона обладают различными свойствами распространения, и каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества.